Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Psychophysiology ; 61(4): e14479, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37920144

RESUMEN

The locus coeruleus-norepinephrine (LC-NE) system, which regulates arousal levels, is important for cognitive control, including emotional conflict resolution. Additionally, the LC-NE system is implicated in P300 generation. If the P300 is mediated by the LC-NE system, and considering the established correlations between LC activity and pupil dilation, P300 amplitude should correlate with task-evoked (phasic) pupil dilation on a trial-by-trial basis. However, prior studies, predominantly utilizing oddball-type paradigms, have not demonstrated correlations between concurrently recorded task-evoked pupil dilation and P300 responses. Using a recently developed emotional face-word Stroop task that links pupil dilation to the LC-NE system, here, we examined both intra- and inter-individual correlations between task-evoked pupil dilation and P300 amplitude. We found that lower accuracy, slower reaction times, and larger task-evoked pupil dilation were obtained in the incongruent compared to the congruent condition. Furthermore, we observed intra-individual correlations between task-evoked pupil dilation and P300 amplitude, with larger pupil dilation correlating with a greater P300 amplitude. In contrast, pupil dilation did not exhibit consistent correlations with N450 and N170 amplitudes. Baseline (tonic) pupil size also showed correlations with P300 and N170 amplitudes, with smaller pupil size corresponding to larger amplitude. Moreover, inter-individual differences in task-evoked pupil dilation between the congruent and incongruent conditions correlated with differences in reaction time and P300 amplitude, though these effects only approached significance. To summarize, our study provides evidence for a connection between task-evoked pupil dilation and P300 amplitude at the single-trial level, suggesting the involvement of the LC-NE system in P300 generation.


Asunto(s)
Nivel de Alerta , Pupila , Humanos , Test de Stroop , Pupila/fisiología , Tiempo de Reacción/fisiología , Nivel de Alerta/fisiología , Locus Coeruleus/fisiología , Norepinefrina/fisiología
2.
Front Aging Neurosci ; 15: 1195424, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37674782

RESUMEN

Aims: Our aim was to differentiate patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD) from cognitively normal (CN) individuals and predict the progression from MCI to AD within a 3-year longitudinal follow-up. A newly developed Holo-Hilbert Spectral Analysis (HHSA) was applied to resting state EEG (rsEEG), and features were extracted and subjected to machine learning algorithms. Methods: A total of 205 participants were recruited from three hospitals, with CN (n = 51, MMSE > 26), MCI (n = 42, CDR = 0.5, MMSE ≥ 25), AD1 (n = 61, CDR = 1, MMSE < 25), AD2 (n = 35, CDR = 2, MMSE < 16), and AD3 (n = 16, CDR = 3, MMSE < 16). rsEEG was also acquired from all subjects. Seventy-two MCI patients (CDR = 0.5) were longitudinally followed up with two rsEEG recordings within 3 years and further subdivided into an MCI-stable group (MCI-S, n = 36) and an MCI-converted group (MCI-C, n = 36). The HHSA was then applied to the rsEEG data, and features were extracted and subjected to machine-learning algorithms. Results: (a) At the group level analysis, the HHSA contrast of MCI and different stages of AD showed augmented amplitude modulation (AM) power of lower-frequency oscillations (LFO; delta and theta bands) with attenuated AM power of higher-frequency oscillations (HFO; beta and gamma bands) compared with cognitively normal elderly controls. The alpha frequency oscillation showed augmented AM power across MCI to AD1 with a reverse trend at AD2. (b) At the individual level of cross-sectional analysis, implementation of machine learning algorithms discriminated between groups with good sensitivity (Sen) and specificity (Spec) as follows: CN elderly vs. MCI: 0.82 (Sen)/0.80 (Spec), CN vs. AD1: 0.94 (Sen)/0.80 (Spec), CN vs. AD2: 0.93 (Sen)/0.90 (Spec), and CN vs. AD3: 0.75 (Sen)/1.00 (Spec). (c) In the longitudinal MCI follow-up, the initial contrasted HHSA between MCI-S and MCI-C groups showed significantly attenuated AM power of alpha and beta band oscillations. (d) At the individual level analysis of longitudinal MCI groups, deploying machine learning algorithms with the best seven features resulted in a sensitivity of 0.9 by the support vector machine (SVM) classifier, with a specificity of 0.8 yielded by the decision tree classifier. Conclusion: Integrating HHSA into EEG signals and machine learning algorithms can differentiate between CN and MCI as well as also predict AD progression at the MCI stage.

3.
Sci Rep ; 13(1): 14252, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37653059

RESUMEN

Electrophysiological working memory (WM) research shows brain areas communicate via macroscopic oscillations across frequency bands, generating nonlinear amplitude modulation (AM) in the signal. Traditionally, AM is expressed as the coupling strength between the signal and a prespecified modulator at a lower frequency. Therefore, the idea of AM and coupling cannot be studied separately. In this study, 33 participants completed a color recall task while their brain activity was recorded through EEG. The AM of the EEG data was extracted using the Holo-Hilbert spectral analysis (HHSA), an adaptive method based on the Hilbert-Huang transforms. The results showed that WM load modulated parieto-occipital alpha/beta power suppression. Furthermore, individuals with higher frontal theta power and lower parieto-occipital alpha/beta power exhibited superior WM precision. In addition, the AM of parieto-occipital alpha/beta power predicted WM precision after presenting a target-defining probe array. The phase-amplitude coupling (PAC) between the frontal theta phase and parieto-occipital alpha/beta AM increased with WM load while processing incoming stimuli, but the PAC itself did not predict the subsequent recall performance. These results suggest frontal and parieto-occipital regions communicate through theta-alpha/beta PAC. However, the overall recall precision depends on the alpha/beta AM following the onset of the retro cue.


Asunto(s)
Gastrópodos , Memoria a Corto Plazo , Humanos , Animales , Dinámicas no Lineales , Encéfalo , Electrofisiología Cardíaca , Electroencefalografía
4.
Neuroscience ; 519: 177-197, 2023 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-36966877

RESUMEN

Anxiety and mindfulness are two inversely linked traits shown to be involved in various physiological domains. The current study used resting state electroencephalography (EEG) to explore differences between people with low mindfulness-high anxiety (LMHA) (n = 29) and high mindfulness-low anxiety (HMLA) (n = 27). The resting EEG was collected for a total of 6 min, with a randomized sequence of eyes closed and eyes opened conditions. Two advanced EEG analysis methods, Holo-Hilbert Spectral Analysis and Holo-Hilbert cross-frequency phase clustering (HHCFPC) were employed to estimate the power-based amplitude modulation of carrier frequencies, and cross-frequency coupling between low and high frequencies, respectively. The presence of higher oscillation power across the delta and theta frequencies in the LMHA group than the HMLA group might have been due to the similarity between the resting state and situations of uncertainty, which reportedly triggers motivational and emotional arousal. Although these two groups were formed based on their trait anxiety and trait mindfulness scores, it was anxiety that was found to be significant predictor of the EEG power, not mindfulness. It led us to conclude that it might be anxiety, not mindfulness, which might have contributed to higher electrophysiological arousal. Additionally, a higher δ-ß and δ-γ CFC in LMHA suggested greater local-global neural integration, consequently a greater functional association between cortex and limbic system than in the HMLA group. The present cross-sectional study may guide future longitudinal studies on anxiety aiming with interventions such as mindfulness to characterize the individuals based on their resting state physiology.


Asunto(s)
Ansiedad , Electroencefalografía , Humanos , Trastornos de Ansiedad , Corteza Cerebral/fisiología , Estudios Transversales , Electroencefalografía/métodos
5.
Hum Brain Mapp ; 44(3): 914-926, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36250439

RESUMEN

The amplitude modulated (AM) neural oscillation is an essential feature of neural dynamics to coordinate distant brain areas. The AM transcranial alternating current stimulation (tACS) has recently been adopted to examine various cognitive functions, but its neural mechanism remains unclear. The current study utilized the phosphene phenomenon to investigate whether, in an AM-tACS, the AM frequency could modulate or even override the carrier frequency in phosphene percept. We measured the phosphene threshold and the perceived flash rate/pattern from 12 human subjects (four females, aged from 20-44 years old) under tACS that paired carrier waves (10, 14, 18, 22 Hz) with different envelope conditions (0, 2, 4 Hz) over the mid-occipital and left facial areas. We also examined the phosphene source by adopting a high-density stimulation montage. Our results revealed that (1) phosphene threshold was higher for AM-tACS than sinusoidal tACS and demonstrated different carrier frequency functions in two stimulation montages. (2) AM-tACS slowed down the phosphene flashing and abolished the relation between the carrier frequency and flash percept in sinusoidal tACS. This effect was independent of the intensity change of the stimulation. (3) Left facial stimulation elicited phosphene in the upper-left visual field, while occipital stimulation elicited equally distributed phosphene. (4) The near-eye electrodermal activity (EDA) measured under the threshold-level occipital tACS was greater than the lowest power sufficient to elicit retinal phosphene. Our results show that AM frequency may override the carrier frequency and determine the perceived flashing frequency of AM-tACS-induced phosphene.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Femenino , Humanos , Adulto Joven , Adulto , Estimulación Transcraneal de Corriente Directa/métodos , Fosfenos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Cognición , Campos Visuales
6.
Front Aging Neurosci ; 14: 832637, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35619940

RESUMEN

Electroencephalography (EEG) can reveal the abnormalities of dopaminergic subcortico-cortical circuits in patients with Parkinson's disease (PD). However, conventional time-frequency analysis of EEG signals cannot fully reveal the non-linear processes of neural activities and interactions. A novel Holo-Hilbert Spectral Analysis (HHSA) was applied to reveal non-linear features of resting state EEG in 99 PD patients and 59 healthy controls (HCs). PD patients demonstrated a reduction of ß bands in frontal and central regions, and reduction of γ bands in central, parietal, and temporal regions. Compared with early-stage PD patients, late-stage PD patients demonstrated reduction of ß bands in the posterior central region, and increased θ and δ2 bands in the left parietal region. θ and ß bands in all brain regions were positively correlated with Hamilton depression rating scale scores. Machine learning algorithms using three prioritized HHSA features demonstrated "Bag" with the best accuracy of 0.90, followed by "LogitBoost" with an accuracy of 0.89. Our findings strengthen the application of HHSA to reveal high-dimensional frequency features in EEG signals of PD patients. The EEG characteristics extracted by HHSA are important markers for the identification of depression severity and diagnosis of PD.

7.
Int J Psychophysiol ; 176: 89-99, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35367510

RESUMEN

Pupil size changes constantly and is mainly determined by global luminance signals. In addition, the pupil responds to various cognitive and arousal processes, with larger pupil dilation observed in higher levels of cognitive or arousal processing. Although these task-evoked pupillary responses are extensively used in the pupil research, pupil analysis focusing on the frequency domain, particularly in the context of arousal and cognitive modulations, is less established. Fourier Transform method (FFT) has been used to understand the modulation of task difficulty on pupil oscillations. However, physiological signals are often characterized as non-linear and non-stationary waves, and the conventional spectral analytical method with linearity presumption is less appropriate to reveal modulation dynamics between time and frequency. Here, we used Hilbert-Huang Transform (HHT) to examine the time-frequency modulations on pupil size regulated by arousal, cognitive, and global luminance signals. Consistent with previous research, using FFT, higher spectral densities were obtained with lower luminance background. Moreover, higher spectral densities were found in the high emotional arousal condition. With HHT, we further demonstrated temporal changes on amplitude spectrum and inter-trial phase coherence (ITPC) in each intrinsic mode function (IMF), with stronger amplitudes in higher IMFs (i.e., low frequencies). Moreover, although global luminance, arousal and saccade preparation modulated pupil oscillatory responses, the modulation pattern in different IMFs was different. Together, our results demonstrated dynamics between the time and frequency domain on pupil oscillatory responses, highlighting the importance of examining the time-frequency interactions in the context of various pupil modulations.


Asunto(s)
Pupila , Movimientos Sacádicos , Nivel de Alerta/fisiología , Humanos , Trastornos del Humor , Estimulación Luminosa , Pupila/fisiología
8.
Hum Brain Mapp ; 43(5): 1535-1547, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34873781

RESUMEN

Repetitive transcranial magnetic stimulation (rTMS) is an alternative treatment for depression, but the neural correlates of the treatment are currently inconclusive, which might be a limit of conventional analytical methods. The present study aimed to investigate the neurophysiological evidence and potential biomarkers for rTMS and intermittent theta burst stimulation (iTBS) treatment. A total of 61 treatment-resistant depression patients were randomly assigned to receive prolonged iTBS (piTBS; N = 19), 10 Hz rTMS (N = 20), or sham stimulation (N = 22). Each participant went through a treatment phase with resting state electroencephalography (EEG) recordings before and after the treatment phase. The aftereffects of stimulation showed that theta-alpha amplitude modulation frequency (fam ) was associated with piTBS_Responder, which involves repetitive bursts delivered in the theta frequency range, whereas alpha carrier frequency (fc ) was related to 10 Hz rTMS, which uses alpha rhythmic stimulation. In addition, theta-alpha amplitude modulation frequency was positively correlated with piTBS antidepressant efficacy, whereas the alpha frequency was not associated with the 10 Hz rTMS clinical outcome. The present study showed that TMS stimulation effects might be lasting, with changes of brain oscillations associated with the delivered frequency. Additionally, theta-alpha amplitude modulation frequency may be as a function of the degree of recovery in TRD with piTBS treatment and also a potential EEG-based predictor of antidepressant efficacy of piTBS in the early treatment stage, that is, first 2 weeks.


Asunto(s)
Trastorno Depresivo Resistente al Tratamiento , Estimulación Magnética Transcraneal , Antidepresivos/uso terapéutico , Depresión , Trastorno Depresivo Resistente al Tratamiento/terapia , Humanos , Corteza Prefrontal/fisiología , Estimulación Magnética Transcraneal/métodos
9.
Front Neurosci ; 15: 673369, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34421511

RESUMEN

Patterns in external sensory stimuli can rapidly entrain neuronally generated oscillations observed in electrophysiological data. Here, we manipulated the temporal dynamics of visual stimuli with cross-frequency coupling (CFC) characteristics to generate steady-state visual evoked potentials (SSVEPs). Although CFC plays a pivotal role in neural communication, some cases reporting CFC may be false positives due to non-sinusoidal oscillations that can generate artificially inflated coupling values. Additionally, temporal characteristics of dynamic and non-linear neural oscillations cannot be fully derived with conventional Fourier-based analyses mainly due to trade off of temporal resolution for frequency precision. In an attempt to resolve these limitations of linear analytical methods, Holo-Hilbert Spectral Analysis (HHSA) was investigated as a potential approach for examination of non-linear and non-stationary CFC dynamics in this study. Results from both simulation and SSVEPs demonstrated that temporal dynamic and non-linear CFC features can be revealed with HHSA. Specifically, the results of simulation showed that the HHSA is less affected by the non-sinusoidal oscillation and showed possible cross frequency interactions embedded in the simulation without any a priori assumptions. In the SSVEPs, we found that the time-varying cross-frequency interaction and the bidirectional coupling between delta and alpha/beta bands can be observed using HHSA, confirming dynamic physiological signatures of neural entrainment related to cross-frequency coupling. These findings not only validate the efficacy of the HHSA in revealing the natural characteristics of signals, but also shed new light on further applications in analysis of brain electrophysiological data with the aim of understanding the functional roles of neuronal oscillation in various cognitive functions.

10.
J Neurophysiol ; 126(4): 1190-1208, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34406888

RESUMEN

The nonsinusoidal waveform is emerging as an important feature of neuronal oscillations. However, the role of single-cycle shape dynamics in rapidly unfolding brain activity remains unclear. Here, we develop an analytical framework that isolates oscillatory signals from time series using masked empirical mode decomposition to quantify dynamical changes in the shape of individual cycles (along with amplitude, frequency, and phase) with instantaneous frequency. We show how phase-alignment, a process of projecting cycles into a regularly sampled phase grid space, makes it possible to compare cycles of different durations and shapes. "Normalized shapes" can then be constructed with high temporal detail while accounting for differences in both duration and amplitude. We find that the instantaneous frequency tracks nonsinusoidal shapes in both simulated and real data. Notably, in local field potential recordings of mouse hippocampal CA1, we find that theta oscillations have a stereotyped slow-descending slope in the cycle-wise average yet exhibit high variability on a cycle-by-cycle basis. We show how principal component analysis allows identification of motifs of theta cycle waveform that have distinct associations to cycle amplitude, cycle duration, and animal movement speed. By allowing investigation into oscillation shape at high temporal resolution, this analytical framework will open new lines of inquiry into how neuronal oscillations support moment-by-moment information processing and integration in brain networks.NEW & NOTEWORTHY We propose a novel analysis approach quantifying nonsinusoidal waveform shape. The approach isolates oscillations with empirical mode decomposition before waveform shape is quantified using phase-aligned instantaneous frequency. This characterizes the full shape profile of individual cycles while accounting for between-cycle differences in duration, amplitude, and timing. We validated in simulations before applying to identify a range of data-driven nonsinusoidal shape motifs in hippocampal theta oscillations.


Asunto(s)
Ondas Encefálicas/fisiología , Región CA1 Hipocampal/fisiología , Electroencefalografía/métodos , Procesamiento de Señales Asistido por Computador , Animales , Ratones , Ritmo Teta/fisiología
11.
Brain Sci ; 11(4)2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33918711

RESUMEN

Response inhibition has been widely explored using the stop signal paradigm in the laboratory setting. However, the mechanism that demarcates attentional capture from the motor inhibition process is still unclear. Error monitoring is also involved in the stop signal task. Error responses that do not complete, i.e., partial errors, may require different error monitoring mechanisms relative to an overt error. Thus, in this study, we included a "continue go" (Cont_Go) condition to the stop signal task to investigate the inhibitory control process. To establish the finer difference in error processing (partial vs. full unsuccessful stop (USST)), a grip-force device was used in tandem with electroencephalographic (EEG), and the time-frequency characteristics were computed with Hilbert-Huang transform (HHT). Relative to Cont_Go, HHT results reveal (1) an increased beta and low gamma power for successful stop trials, indicating an electrophysiological index of inhibitory control, (2) an enhanced theta and alpha power for full USST trials that may mirror error processing. Additionally, the higher theta and alpha power observed in partial over full USST trials around 100 ms before the response onset, indicating the early detection of error and the corresponding correction process. Together, this study extends our understanding of the finer motor inhibition control and its dynamic electrophysiological mechanisms.

12.
Sci Rep ; 11(1): 5670, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33707511

RESUMEN

The detection of event-related potentials (ERPs) through electroencephalogram (EEG) analysis is a well-established method for understanding brain functions during a cognitive process. To increase the signal-to-noise ratio (SNR) and stationarity of the data, ERPs are often filtered to a wideband frequency range, such as 0.05-30 Hz. Alternatively, a natural-filtering procedure can be performed through empirical mode decomposition (EMD), which yields intrinsic mode functions (IMFs) for each trial of the EEG data, followed by averaging over trials to generate the event-related modes. However, although the EMD-based filtering procedure has advantages such as a high SNR, suitable waveform shape, and high statistical power, one fundamental drawback of the procedure is that it requires the selection of an IMF (or a partial sum of a range of IMFs) to determine an ERP component effectively. Therefore, in this study, we propose an intrinsic ERP (iERP) method to overcome the drawbacks and retain the advantages of event-related mode analysis for investigating ERP components. The iERP method can reveal multiple ERP components at their characteristic time scales and suitably cluster statistical effects among modes by using a tailored definition of each mode's neighbors. We validated the iERP method by using realistic EEG data sets acquired from a face perception task and visual working memory task. By using these two data sets, we demonstrated how to apply the iERP method to a cognitive task and incorporate existing cluster-based tests into iERP analysis. Moreover, iERP analysis revealed the statistical effects between (or among) experimental conditions more effectively than the conventional ERP method did.

13.
Neuroscience ; 460: 69-87, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33588001

RESUMEN

Visual working memory (VWM) relies on sustained neural activities that code information via various oscillatory frequencies. Previous studies, however, have emphasized time-frequency power changes, while overlooking the possibility that rhythmic amplitude variations can also code frequency-specific VWM information in a completely different dimension. Here, we employed the recently-developed Holo-Hilbert spectral analysis to characterize such nonlinear amplitude modulation(s) (AM) underlying VWM in the frontoparietal systems. We found that the strength of AM in mid-frontal beta and gamma oscillations during late VWM maintenance and VWM retrieval correlated with people's VWM performance. When behavioral performance was altered with transcranial electric stimulation, AM power changes during late VWM maintenance in beta, but not gamma, tracked participants' VWM variations. This beta AM likely codes information by varying its amplitude in theta period for long-range propagation, as our connectivity analysis revealed that interareal theta-beta couplings-bidirectional between mid-frontal and right-parietal during VWM maintenance and unidirectional from right-parietal to left-middle-occipital during late VWM maintenance and retrieval-underpins VWM performance and individual differences.


Asunto(s)
Memoria a Corto Plazo , Percepción Visual , Humanos
14.
Front Hum Neurosci ; 15: 614978, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33584231

RESUMEN

A critical issue in executive control is how the nervous system exerts flexibility to inhibit a prepotent response and adapt to sudden changes in the environment. In this study, force measurement was used to capture "partial" unsuccessful trials that are highly relevant in extending the current understanding of motor inhibition processing. Moreover, a modified version of the stop-signal task was used to control and eliminate potential attentional capture effects from the motor inhibition index. The results illustrate that the non-canceled force and force rate increased as a function of stop-signal delay (SSD), offering new objective indices for gauging the dynamic inhibitory process. Motor response (time and force) was a function of delay in the presentation of novel/infrequent stimuli. A larger lateralized readiness potential (LRP) amplitude in go and novel stimuli indicated an influence of the novel stimuli on central motor processing. Moreover, an early N1 component reflects an index of motor inhibition in addition to the N2 component reported in previous studies. Source analysis revealed that the activation of N2 originated from inhibitory control associated areas: the right inferior frontal gyrus (rIFG), pre-motor cortex, and primary motor cortex. Regarding partial responses, LRP and error-related negativity (ERNs) were associated with error correction processes, whereas the N2 component may indicate the functional overlap between inhibition and error correction. In sum, the present study has developed reliable and objective indices of motor inhibition by introducing force, force-rate and electrophysiological measures, further elucidating our understandings of dynamic motor inhibition and error correction.

15.
Biol Psychol ; 157: 107971, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33091450

RESUMEN

Although great progress has been made in our understanding of perceptual-cognitive expertise in team sports, the neurocognitive mechanisms underlying such cognitive advantage in the face of multiple, sometimes conflicting, channels of information are not well understood. Two electroencephalographic indices associated with perceptual decisions, the P3 component of event-related potential and alpha inter-trial phase coherence (ITPC), were measured and compared across elite soccer players and non-athletic controls while performing a redundant-target task. Specifically, we adopted an effective diagnostic tool, Systems Factorial Technology, to assess participants' workload capacity. Soccer players exhibited larger workload capacity while making faster decisions compared with controls. Moreover, this larger workload capacity was associated with modulations of P3 and alpha ITPC when processing two targets relative to one target and one distractor, an effect that was not observed in controls. Together, the present findings offer a possible mechanistic explanation of perceptual-cognitive expertise in the context of team sports.


Asunto(s)
Rendimiento Atlético , Cognición , Fútbol , Toma de Decisiones , Electroencefalografía , Potenciales Evocados , Humanos , Fútbol/fisiología
16.
J Neuroeng Rehabil ; 17(1): 72, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32527268

RESUMEN

BACKGROUND: Dual transcranial direct current stimulation (tDCS) to the bilateral primary motor cortices (M1s) has potential benefits in chronic stroke, but its effects in subacute stroke, when behavioural effects might be expected to be greater, have been relatively unexplored. Here, we examined the neurophysiological effects and the factors influencing responsiveness of dual-tDCS in subacute stroke survivors. METHODS: We conducted a randomized sham-controlled crossover study in 18 survivors with first-ever, unilateral subcortical ischaemic stroke 2-4 weeks after stroke onset and 14 matched healthy controls. Participants had real dual-tDCS (with an ipsilesional [right for controls] M1 anode and a contralesional M1 [left for controls] cathode; 2 mA for 20mins) and sham dual-tDCS on separate days, with concurrent paretic [left for controls] hand exercise. Using transcranial magnetic stimulation (TMS) and magnetoencephalography (MEG), we recorded motor evoked potentials (MEPs), the ipsilateral silent period (iSP), short-interval intracortical inhibition, and finger movement-related cortical oscillations before and immediately after tDCS. RESULTS: Stroke survivors had decreased excitability in ipsilesional M1 with a relatively excessive transcallosal inhibition from the contralesional to ipsilesional hemisphere at baseline compared with controls, as quantified by decreased MEPs and increased iSP duration. Dual-tDCS led to increased MEPs and decreased iSP duration in ipsilesional M1. The magnitude of the tDCS-induced MEP increase in stroke survivors was predicted by baseline contralesional-to-ipsilesional transcallosal inhibition (iSP) ratio. Baseline post-movement synchronization in α-band activity in ipsilesional M1 was decreased after stroke compared with controls, and its tDCS-induced increase correlated with upper limb score in stroke survivors. No significant adverse effects were observed during or after dual-tDCS. CONCLUSIONS: Task-concurrent dual-tDCS in subacute stroke can safely and effectively modulate bilateral M1 excitability and inter-hemispheric imbalance and also movement-related α-activity.


Asunto(s)
Corteza Motora/fisiopatología , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/terapia , Estimulación Transcraneal de Corriente Directa/métodos , Adulto , Anciano , Estudios Cruzados , Potenciales Evocados Motores/fisiología , Femenino , Humanos , Magnetoencefalografía/métodos , Masculino , Persona de Mediana Edad , Movimiento/fisiología , Estimulación Magnética Transcraneal/métodos , Extremidad Superior
17.
Neuroscience ; 425: 267-279, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31809727

RESUMEN

Motor expertise has recently been associated with differences in domain-general cognition. Studies using averaged neurophysiological signals (e.g., event-related potentials) have shown varying degree of expertise-related differences in neural activity. As a result, the precise mechanisms underlying these differences remain to be described. Here we used multiscale entropy analysis (MSE) to investigate whether the complexity of underlying neural systems working in a wide-range time scales can better explain the cognitive characteristics of athletes with different domains of expertise. Behavioral and electroencephalograms (EEG) measures of athletes practicing an interceptive sport (badminton; n = 17) or a static sport (long-distance running; n = 17) were assessed during a flanker task with varying degrees of response conflict. The interceptive sport players showed superior behavioral performance overall on the task relative to the static sport players. Although both groups exhibited greater sample entropy across most time scales in high-conflict relative to low-conflict trials over the parietal site, this effect was only evident at coarser time scales over the midfrontal site for the interceptive sport players. Together, our results suggest that individual differences in motor expertise may be associated with difference in information-processing capacity and information integration during cognitive processing, as demonstrated by differential cognitive modulation of brain signal variability.


Asunto(s)
Atletas , Atención/fisiología , Encéfalo/fisiología , Cognición/fisiología , Potenciales Evocados/fisiología , Adulto , Electroencefalografía/métodos , Femenino , Humanos , Masculino , Deportes de Raqueta/fisiología , Adulto Joven
18.
J Vis ; 19(14): 14, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31845974

RESUMEN

The response latency of steady-state visually evoked potentials (SSVEPs) is a sensitive measurement for investigating visual functioning of the human brain, specifically in visual development and for clinical evaluation. This latency can be measured from the slope of phase versus frequency of responses by using multiple frequencies of stimuli. In an attempt to provide an alternative measurement of this latency, this study utilized an envelope response of SSVEPs elicited by amplitude-modulated visual stimulation and then compared with the envelope of the generating signal, which was recorded simultaneously with the electroencephalography recordings. The advantage of this measurement is that it successfully estimates the response latency based on the physiological envelope in the entire waveform. Results showed the response latency at the occipital lobe (Oz channel) was approximately 104.55 ms for binocular stimulation, 97.14 ms for the dominant eye, and 104.75 ms for the nondominant eye with no significant difference between these stimulations. Importantly, the response latency at frontal channels (125.84 ms) was significantly longer than that at occipital channels (104.11 ms) during binocular stimulation. Together with strong activation of the source envelope at occipital cortex, these findings support the idea of a feedforward process, with the visual stimuli propagating originally from occipital cortex to anterior cortex. In sum, these findings offer a novel method for future studies in measuring visual response latencies and also potentially shed a new light on understanding of how long collective neural activities take to travel in the human brain.


Asunto(s)
Encéfalo/fisiología , Electroencefalografía , Potenciales Evocados Visuales , Estimulación Luminosa/métodos , Tiempo de Reacción , Adulto , Corteza Cerebral/fisiología , Femenino , Humanos , Masculino , Lóbulo Occipital/fisiología , Procesamiento de Señales Asistido por Computador , Visión Ocular , Adulto Joven
19.
Sci Rep ; 9(1): 16919, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31729410

RESUMEN

Natural sensory signals have nonlinear structures dynamically composed of the carrier frequencies and the variation of the amplitude (i.e., envelope). How the human brain processes the envelope information is still poorly understood, largely due to the conventional analysis failing to quantify it directly. Here, we used a recently developed method, Holo-Hilbert spectral analysis, and steady-state visually evoked potential collected using electroencephalography (EEG) recordings to investigate how the human visual system processes the envelope of amplitude-modulated signals, in this case with a 14 Hz carrier and a 2 Hz envelope. The EEG results demonstrated that in addition to the fundamental stimulus frequencies, 4 Hz amplitude modulation residing in 14 Hz carrier and a broad range of carrier frequencies covering from 8 to 32 Hz modulated by 2 Hz amplitude modulation are also found in the two-dimensional frequency spectrum, which have not yet been recognized before. The envelope of the stimulus is also found to dominantly modulate the response to the incoming signal. The findings thus reveal that the electrophysiological response to amplitude-modulated stimuli is more complex than could be revealed by, for example, Fourier analysis. This highlights the dynamics of neural processes in the visual system.


Asunto(s)
Electroencefalografía , Fenómenos Electrofisiológicos , Corteza Visual/fisiología , Adulto , Análisis de Datos , Potenciales Evocados Visuales , Femenino , Humanos , Masculino , Estimulación Luminosa , Vías Visuales , Adulto Joven
20.
Soc Cogn Affect Neurosci ; 14(6): 645-655, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31119291

RESUMEN

Working memory capacity (WMC) can predict conflict control ability. Measures of both abilities are impaired by anxiety, which is often inversely linked with mindfulness. It has been shown that a combination of high mindfulness and low anxiety is associated with better conflict control and WMC. The current study explored the electrophysiology related to such behavioral differences. Two experimental groups, one with high mindfulness and low anxiety (HMLA) and one with low mindfulness and high anxiety (LMHA), performed a color Stroop task and a change detection task, both with simultaneous electroencephalogram (EEG) recording. An advanced EEG analytical approach, Hilbert-Huang transform (HHT) analysis, was employed. This is regarded as a robust method to analyze non-linear and non-stationary signals. Lower delta activity at posterior temporal and occipital regions was seen in the HMLA group for the Stroop conflict conditions and might be generally associated with higher accuracy in this group and indicative of higher attentiveness. Higher accuracy rates and WMC were seen in the HMLA group and might be specifically associated with the higher alpha activity observed in prefrontal cortex, fronto-central and centro-parietal regions in this group. Future studies should explore how mindfulness and anxiety can independently affect these cognitive functions and their associated neurophysiology.


Asunto(s)
Ansiedad/psicología , Encéfalo/fisiología , Cognición/fisiología , Memoria a Corto Plazo/fisiología , Atención Plena , Adolescente , Atención/fisiología , Mapeo Encefálico , Electroencefalografía , Femenino , Humanos , Masculino , Test de Stroop , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA